Version current

API Reference

Comprehensive API documentation for RedisVL, generated from source code comments.

The API documentation is automatically generated from the latest release and includes:

  • Complete method signatures with parameter descriptions

  • Usage examples and code samples

  • Cross-references between related classes

  • Since tags indicating version availability

  • See also links to related functionality

Core Module

The RedisVL core module provides comprehensive functionality for vector search, semantic caching, and AI-native Redis applications.

Key Packages

  • Index: com.redis.vl.index - Search index creation and management

  • Query: com.redis.vl.query - Vector and hybrid query builders

  • Schema: com.redis.vl.schema - Index schema definition and validation

  • Cache: com.redis.vl.extensions.cache - Semantic and embeddings caching

  • Vectorizers: com.redis.vl.utils.vectorize - Embedding generation with LangChain4J and ONNX

  • Rerankers: com.redis.vl.utils.rerank - Document reranking with cross-encoder models

Complete API Reference

For a unified view of all packages and their interactions:

This aggregated documentation provides:

  • Complete inheritance hierarchies across packages

  • Unified search across all classes

  • Package overview documentation for the entire library

Most Important Classes

Core Classes

Class Description

SearchIndex

Main class for creating and managing vector search indexes

IndexSchema

Schema definition for indexes, supports YAML and programmatic configuration

VectorQuery

Builder for vector similarity queries with filtering

Filter

Query filter builder for hybrid search (tag, numeric, text filters)

Caching Classes

Class Description

SemanticCache

LLM response caching with semantic similarity matching

EmbeddingsCache

Cache for storing and retrieving embeddings to avoid recomputation

CacheHit

Result object containing cached data and metadata

Vectorizer Classes

Class Description

LangChain4JVectorizer

Vectorizer using LangChain4J embedding models (OpenAI, Azure, Ollama, etc.)

SentenceTransformersVectorizer

Local ONNX-based vectorizer for Sentence Transformers models

BaseVectorizer

Abstract base class for custom vectorizer implementations

HuggingFaceModelDownloader

Utility for downloading ONNX models from Hugging Face

Reranker Classes

Class Description

HFCrossEncoderReranker

Reranker using HuggingFace cross-encoder models via ONNX Runtime

BaseReranker

Abstract base class for reranker implementations

RerankResult

Result object containing reranked documents and optional relevance scores

CrossEncoderLoader

ONNX model loader for cross-encoder models with tokenization support

Download API Documentation

The API documentation is also available for offline use:

Integration with IDE

For the best development experience, add the Javadoc JAR to your IDE:

IntelliJ IDEA

  1. Go to FileProject StructureLibraries

  2. Select the RedisVL library

  3. Click + and add the Javadoc JAR

  4. Apply changes

Eclipse

  1. Right-click on the RedisVL JAR in Package Explorer

  2. Select PropertiesJavadoc Location

  3. Choose Javadoc in archive and select the Javadoc JAR

  4. Apply changes

VS Code

Install the Extension Pack for Java which automatically downloads and integrates Javadoc documentation when available.